\(\int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx\) [235]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 162 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=-\frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(5 A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {(5 A+3 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {(A+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \]

[Out]

1/3*(5*A+3*C)*sin(d*x+c)/a/d/sec(d*x+c)^(1/2)-(A+C)*sin(d*x+c)/d/(a+a*sec(d*x+c))/sec(d*x+c)^(1/2)-(3*A+C)*(co
s(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)
^(1/2)/a/d+1/3*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))
*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4170, 3872, 3854, 3856, 2720, 2719} \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\frac {(5 A+3 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {(A+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}+\frac {(5 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}-\frac {(3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[In]

Int[(A + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])),x]

[Out]

-(((3*A + C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d)) + ((5*A + 3*C)*Sqrt[Cos[c
 + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) + ((5*A + 3*C)*Sin[c + d*x])/(3*a*d*Sqrt[Sec[c
+ d*x]]) - ((A + C)*Sin[c + d*x])/(d*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4170

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*
(2*m + 1))), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b
*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x
] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))}-\frac {\int \frac {-\frac {1}{2} a (5 A+3 C)+\frac {1}{2} a (3 A+C) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{a^2} \\ & = -\frac {(A+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))}-\frac {(3 A+C) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a}+\frac {(5 A+3 C) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{2 a} \\ & = \frac {(5 A+3 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {(A+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))}+\frac {(5 A+3 C) \int \sqrt {\sec (c+d x)} \, dx}{6 a}-\frac {\left ((3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a} \\ & = -\frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(5 A+3 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {(A+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))}+\frac {\left ((5 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a} \\ & = -\frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(5 A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {(5 A+3 C) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {(A+C) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.77 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.43 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) (\cos (d x)+i \sin (d x)) \left (2 (5 A+3 C) \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+i (3 A+C) e^{\frac {1}{2} i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+2 \cos (c+d x) \left (-3 i (3 A+C) \cos \left (\frac {1}{2} (c+d x)\right )+(5 A+3 C+2 A \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{3 a d (1+\sec (c+d x))} \]

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])),x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]^(3/2)*(Cos[d*x] + I*Sin[d*x])*(2*(5*A + 3*C)*Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2] + I*(3*A + C)*E^((I/2)*(c + d*x))*(1 + E^(I*(c + d*x)))*Sqrt[1 + E^((2*I)*(c + d*x
))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + 2*Cos[c + d*x]*((-3*I)*(3*A + C)*Cos[(c + d*x)/2]
 + (5*A + 3*C + 2*A*Cos[c + d*x])*Sin[(c + d*x)/2])))/(3*a*d*E^(I*d*x)*(1 + Sec[c + d*x]))

Maple [A] (verified)

Time = 2.85 (sec) , antiderivative size = 262, normalized size of antiderivative = 1.62

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (5 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-8 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (18 A +6 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-7 A -3 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(262\)

[In]

int((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(5*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*A*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2))+3*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-8*A*sin(1/2*d*x+1
/2*c)^6+(18*A+6*C)*sin(1/2*d*x+1/2*c)^4+(-7*A-3*C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.60 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\frac {{\left (\sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A - 3 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A + 3 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (2 \, A \cos \left (d x + c\right )^{2} + {\left (5 \, A + 3 \, C\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(-5*I*A - 3*I*C)*cos(d*x + c) + sqrt(2)*(-5*I*A - 3*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c
) + I*sin(d*x + c)) + (sqrt(2)*(5*I*A + 3*I*C)*cos(d*x + c) + sqrt(2)*(5*I*A + 3*I*C))*weierstrassPInverse(-4,
 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2)*(3*I*A + I*C)*cos(d*x + c) + sqrt(2)*(3*I*A + I*C))*weierstras
sZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(sqrt(2)*(-3*I*A - I*C)*cos(d*x +
c) + sqrt(2)*(-3*I*A - I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)))
 + 2*(2*A*cos(d*x + c)^2 + (5*A + 3*C)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\frac {\int \frac {A}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a} \]

[In]

integrate((A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2)/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A/(sec(c + d*x)**(5/2) + sec(c + d*x)**(3/2)), x) + Integral(C*sec(c + d*x)**2/(sec(c + d*x)**(5/2)
+ sec(c + d*x)**(3/2)), x))/a

Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(3/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(3/2)), x)